
V�����: Nonlinear Vibration Challenge-Response for Resilient
User Authentication

Jingjie Li
University of Wisconsin–Madison

jingjie.li@wisc.edu

Kassem Fawaz
University of Wisconsin–Madison

kfawaz@wisc.edu

Younghyun Kim
University of Wisconsin–Madison

younghyun.kim@wisc.edu

ABSTRACT
Biometrics have been widely adopted for enhancing user authenti-
cation, bene�ting usability by exploiting pervasive and collectible
unique characteristics from physiological or behavioral traits of
human. However, successful attacks on “static” biometrics such as
�ngerprints have been reported where an adversary acquires users’
biometrics stealthily and compromises non-resilient biometrics.

To mitigate the vulnerabilities of static biometrics, we lever-
age the unique and nonlinear hand-surface vibration response and
design a system called V����� to defend against various attacks
including replay and synthesis. The V����� system relies on two
major properties in hand-surface vibration responses: uniqueness,
contributed by physiological characteristics of human hands, and
nonlinearity, whose complexity prevents attackers from predicting
the response to an unseen challenge. V����� employs a challenge-
response protocol. By changing the vibration challenge, the system
elicits input-dependent nonlinear “symptoms” and unique spec-
trotemporal features in the vibration response, stopping both replay
and synthesis attacks. Also, a large number of disposable challenge-
response pairs can be collected during enrollment passively for
daily authentication sessions.

We build a prototype of V����� with an o�-the-shelf vibra-
tion speaker and accelerometers to verify its usability and security
through a comprehensive user experiment. Our results show that
V����� demonstrates both strong security and long-term consis-
tency with a low equal error rate (EER) of 5.8% against imperson-
ation attack while correctly rejecting all other attacks including
replay and synthesis attacks using a very short vibration challenge.

CCS CONCEPTS
• Security and privacy→ Authentication.
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1 INTRODUCTION
The mass proliferation of “smart” devices has created unprece-
dented security and privacy concerns to their users. One of the
signi�cant security concerns comes from unauthorized entities ac-
cessing and controlling user devices. Stronger access control goes a
long way towards alleviating security and privacy threats to users
and their devices. User authentication, where a user has to prove
their identity to a system, is one core mechanism to achieve ade-
quate access control.

Biometric user authentication, which relies on the unique physi-
ological or behavioral traits of the user to verify their identity, has
been touted as the solution that meets both security and usability
goals. Thanks to its low cognitive burden, it is more attractive to the
users who wish to authenticate themselves to their devices without
having to memorize a password or use an additional security device.

Several commercial and research solutions have been proposed
or deployed to achieve biometric authentication. These solutions
range from the traditional approaches such as� ngerprints [14]
and iris scan [12] to the more advanced modalities such as human
touching [6, 32, 34], human speech [31, 43, 44], eye movement pat-
terns [13, 15, 33], electrophysiological measurements [2, 38, 45],
and vibration responses [5, 21, 23]. Of these modalities, vibration re-
sponse has emerged as an attractive method due to its compatibility
with commodity devices. Consumer devices, such as smartphones
and watches, are commonly equipped with vibration motor, mi-
crophone, accelerometer, and gyroscope which can generate and
measure the vibrations o� the human body.

Typical biometric approaches rely on what we refer to as “static”
biometrics. An initial training phase collects physiological or be-
havioral information from the user, such as a gesture,�ngerprint,
or voice print. At the authentication phase, the user proves their
identity by reusing the same information every time. The problem
lies in that human biometrics are non-resilient [24, 26, 27, 41]:
once the biometric information has been compromised, the user
cannot recover. Some biometric methods such as gesture-based vi-
bration [21] can scale to multiple traits corresponding to a speci�c
gesture. Their usability, however, will degrade signi�cantly as a
cost due to increased training e�ort and mental burden.

In this work, we attempt to answer this question: Is it possible to
leverage the strengths of biometric authentication while avoiding its
pitfalls? We answer this question in the a�rmative and argue that
the key to answering this question is to consider a dynamic view of
human biometrics. The human body is a complex and dynamic sys-
tem that reacts di�erently to di�erent physical stimuli. If through
some training phase, an authenticating service knows the responses
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Figure 1: Illustration of V�����.

to a large set of stimuli, then it can play a new and disposable stim-
ulus at each session. It collects the response and attempts to match
it to the previously recorded response. Instead of reusing the same
biometric to authenticate the user, an authenticating service can
use a new biometric for each authentication session and never use
it again. We refer to this model as challenge-response biomet-
ric authentication. This model is akin to physically unclonable
functions (PUFs) that are popular in hardware security [35].

In this paper, we presentV�����, a system that adopts a challenge-
response protocol for biometric authentication. It leverages the
nonlinear and complex nature of hand-surface vibration. Figure 1
illustrates the use case of V�����. It has access to a pool of pre-
collected challenge-response pairs from a user. The challenge refers
to a vibration stimulus to the user’s hand through a surface, and
the response is the collected vibration. Due to the properties of
the user’s hand contact, each response is unique per-challenge and
per-user. At each authentication session, V����� plays a disposable
challenge and uses a classi�er to decide whether the measured re-
sponse matches the pre-collected one. By design, V����� is resilient
to an attacker replaying previously used biometric information.

To realize V�����, we have to design two core components: (1)
the challenges to play and (2) the classi�ers to compare the collected
and pre-collected responses.

Challenge design: A challenge is a vibration stimulus that com-
prises di�erent spectral components. First, to maximize the user-
distinguishability as a biometric, a frequency sweep is used to
capture the frequency selectivity contributed by the physiological
traits in human hands. Second, combinations of sinusoidal waves
with random frequencies act as stimuli along with the frequency
sweep in disposable challenges to elicit the user-distinct and vary-
ing degrees of complicated nonlinearity in vibration responses,
including harmonics and intermodulation, which are hard to model
and predict for unseen responses.

Response classi�cation: V����� is a per-user system; aV�����
user does not have access to other users’ response data for privacy
and security considerations. This requirement constrains V�����’s
classi�er design as it cannot obtain negative samples from other
users. To address this issue, we utilize the one-class k-nearest neigh-
bor (OC-kNN) classi�er, which relies on the similarity between
inference-time observations and training instances. V����� trains

one classi�er for each challenge. We devised a novel mechanism to
set the matching threshold of the classi�er per-user as to reduce
the misclassi�cation rate.

We implementV����� using o�-the-shelf speaker and accelerom-
eter. Our evaluation via 15 individuals shows the following:

• V����� exhibits a favorable performance in terms of security
and usability with an EER at 5.8% evaluated using long-term
authentication session against impersonation attacks.

• V����� can reject 97.3% impersonation samples and 100%
replay and synthesis attacks with reasonable e�ort in pas-
sive enrollment and an extremely short 200-ms vibration
challenge in one authentication session.

• V�����’s challenge-response design is resilient to variations
in the challenge design. Using shorter challenges with fewer
spectral stimuli still maintains a satisfactory EER.

2 BACKGROUND ON HAND-SURFACE
VIBRATION RESPONSE

In this section, we introduce two properties of hand-surface vibra-
tions that enable the operation of V�����: user distinguishability
and nonlinearity.

2.1 User-Distinct Vibration Response
A human hand exhibits unique physiological features such as geom-
etry, bone shape, bone-muscle ratio, bone density, which have been
utilized as a static biometric for a while [3]. These features lead to
the human-distinguishable characteristics of acoustic dispersion,
absorption, and re�ection when a person places his/her hand on a
vibration surface. Speci�cally, the contact area between a hand and
the vibration surface a�ects the re�ection and absorption of the
surface vibration. Di�erences in the contact area (due to di�erent
hand geometry of di�erent users) contribute to di�erent vibration
propagation paths and varying constructive or destructive inter-
ferences at di�erent frequencies – leading to frequency-selective
vibration responses. Moreover, the di�erences in hand’s damping
and acoustic absorption relate to composition, the force and distri-
bution of contact between the hand and surface, contributing to
vibration responses that are user-distinct, too [8].

One can naively model the vibration response of a hand using
a spring-mass-damper system. Such a model, however, ignores
several practical issues, including the multipath-induced frequency
selectivity dependent on the hand-surface contact and the nonlinear
spectral interactions. As a result, an accurate user-speci�c model
for hand contact interaction is extremely hard to build even by
state-of-the-art 3D� nite-element (FE) modeling techniques [9, 36].

2.2 Nonlinear E�ects in Vibration Response
The second property that V����� utilizes is the nonlinearity in the
vibration responses of the hand-surface system, which is di�cult
to model and predict [22, 39, 42]. Previous studies have demon-
strated that a hand itself, due to its geometry and composition, is a
nonlinear medium for acoustic propagation [9, 16].

Here, we show a model of nonlinear acoustics to explain the
complexity of vibration responses of the hand-surface system. For
a linear system, the output signal Sout is a linear combination of
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the input signals Sin , which can be represented as:

Sout = A · Sin . (1)

The complex gain only a�ects the phase and amplitude of the inputs,
and no new frequency component appears in the response of the
linear system. In a nonlinear system, however, like the hand-surface
system, the response will contain new frequency components. For
simplicity, we model the nonlinear response as a power-series of
inputs with di�erent gains at each term:

Sout =
1’
n=1

An · (Sin )n . (2)

For example, if the input is a single sinusoidal wave at a frequency
f1, di�erent orders of harmonics (n · f1) will appear in the response.
For an input composed of two signals, the output of this nonlinear
system exhibits intermodulation:

Sout = A1 · (Sin,1 + Sin,2) +A2 · (Sin,1 + Sin,2)2... (3)

For example, the second order term in Eq. 3 has a product of signals
resulting in new frequency components at f1 � f2 and f1 + f2. We
can rewrite the second-order term of the output in the equation
above as follows.

Sout,2 =a
h
1 sin(2� · 2f1) + ah2 sin(2� · 2f2)

+am1 sin(2� (f1 + f2)) + am2 sin(2� (f1 � f2)),
(4)

where ahi are the gains for harmonics and ami are those for the
intermodulation.

The harmonic gains depend on the medium properties and the
frequency, while the intermodulation gains depend on several fac-
tors including the material coe�cients between f1 and f2, the am-
plitudes of both f1 and f2, which are sensitive to the structure of
vibration medium [22] – the hand-surface system in our case. The
system creates more complicated intermodulation interactions for
higher order terms which are hard to predict.

Note that this simpli�ed model does not convey the dynamics
and component interactions of a nonlinear system as the nonlinear
responses are highly input-dependent within the same nonlinear
system. The model fails to describe the non-analytic responses
like complicated energy exchange between di�erent frequencies
as well as temporal dependencies of nonlinear coe�cients [39,
42]. Other nonlinear e�ects include nonlinear attenuation rates
at di�erent frequencies depending on the input excitation level [1].
Due to this complex and nonlinear nature of vibration responses in
a hand-surface system, precise modeling or prediction of arbitrary
responses preserving individual traits is highly implausible. It is
very hard to predict the hand response for a previously unobserved
input signal, to the best of our knowledge.

2.3 Motivational Example of Hand-Surface
Vibration

We take an exempli�cation approach to motivate the distinct and
nonlinear hand-surface vibration.We record the vibration responses
of a hand-surface system to provide an intuition about our model.
We use a portable vibration speaker (Vib-Tribe Troll Plus) to gener-
ate an input vibration and we collect the responses using a contact
microphone (BU-27135 accelerometer) from a vibrating copper sur-
face (setup similar to Figure 1).
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Figure 3: Nonlinearity in hand-surface measurement.

User distinguishability: We� rst examine the user distinguisha-
bility of frequency responses. Two users place their hands on the
vibration surface with the same gesture (relaxed with spreading
�ngers). Meanwhile, the vibration speaker plays a sweeping sinu-
soidal vibration from 0.2 to 18 kHz for a duration of 200 ms. Figure 2
shows the frequency response of the transfer function of each user,
illustrating the attenuation at di�erent frequencies. It is evident
from the� gure that the responses of the two users are easily dis-
tinguishable. The transfer function does not capture all sources of
nonlinearity like harmonics and intermodulation which result in
more distinguishability.

Nonlinearity: To visualize the nonlinearity in hand-surface sys-
tem, we play two sinusoidal waves at 1 kHz and 10.5 kHz simultane-
ously. We show the frequency response of the raw recorded signals
(not the transfer functions as before) with andwithout a hand placed
on the vibration surface in Figures 3(a) and 3(b), respectively. We
mark the major frequencies in grey dots, some representative har-
monics in red triangles, and intermodulation components as purple
squares. The spectral locations of the newly-generated frequencies
match the anticipated harmonics and intermodulation results in
both scenarios. The intermodulation components are signi�cant
in both cases and even comparable with the major frequencies.
Also, the hand exhibits distinguishable modi�cation of nonlinear
components as evident from components marked and circled in
Figures 3(a) and (b).

The� ndings above show an intuition that the vibration responses
of hand-surface system are distinct between users (Figure 2), and the
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Figure 4: System and threat model.

nonlinear e�ects are signi�cant (Figures 3), too. Both observations
are critical to the design of V�����.

3 SYSTEM AND THREAT MODELS
In this section, we describe the system and threatmodels forV�����.

3.1 System Model
Figure 4 shows an overview of the system model, including the
involved parties. We assume a general scenario where V����� is
employed to authenticate a user (U ) to use smart devices (D). The
authenticator service (S) grants permission for the user (U ) to use
smart devices (D) and access to authorized contents. The user (U )
requests authentication and permission through the V����� termi-
nal (V ), which is associated with an interface consisting a surface,
a vibration speaker, and contact microphones. For example, V can
simply refer to laptop or a smartphone paired with a smartwatch
that has a high bandwidth accelerometer [17]. V generates a vi-
bration signal according to a challenge assigned by S , collects the
response, and sends it to S . We assume a secure training phase dur-
ing which S collects all vibration challenge-response pairs securely
for future veri�cation.

For each authentication request, S randomly selects one dis-
posable vibration challenge and sends to V , which collects the
hand-surface response. The response is sent back to S to verify
the claimed identity U . Note that V may not only verify the iden-
tity solely relying on vibration challenge-responses but also on
other factors like password in a multi-factor authentication sce-
nario. Once U is veri�ed and authenticated, the requested D will
be activated, and the authorized contents, such as a video stream,
will be distributed.

Figure 4 depicts the involved parties in our system model as
separate entities, just for visualization. There is nothing preventing
V , D and S to be part of the same device, such as a laptop, desktop,
or even a smartphone.

3.2 Threat Model
The goal of the adversary (A) is to deceive S to grant the access to
the victim,U . In addition to the attacker capabilities that have been
typically assumed in previous work, such as physical access to the
authentication devices, we take one step further and assume that
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Figure 5: Authentication protocol of V�����.

the active attacker is able to observe previously used responses and
replay raw or synthesized response corresponding to an unknown
challenge through a side channel. This side channel could refer to
(1) a compromised networking interface between V and S or to (2)
the attacker collecting responses through a placed/compromised
device in the same environment. In this paper, we assume a strong
adversary that is capable of recording the exact challenge-response
pairs. By considering a strong adversary model capable of record-
ing and replaying biometric information, we avoid the pitfalls of
previous defense approaches. Under this scenario, we consider the
following attack scenarios.
• Zero-e�ort attack. In this scenario, A only bypasses the pass-
word and tries to authenticate opportunistically by vibrating an
empty surface without hand contact using the authentication-
time challenge assigned by V�����.

• Impersonation. In this scenario, A has access to V , bypasses
other authentication factors like password, claims the identity of
U , and places his hand on the vibration surface to impersonate
legitimateU using the same gesture.

• Rawsignal replay attack. In this scenario,A acquires previously-
used vibration challenge-responses from U and replays an arbi-
trary raw response to S during an authentication session through
a compromised wireless channel.

• Synthesis attack. More advanced than simply replaying raw
signal, A attempts to predict the response of a speci�c challenge
by modeling from previously observed responses and inject the
synthesized signal in real time. We consider the implementation
of multiple synthesis methods in our evaluation.

4 VELODY PROTOCOL AND FRAMEWORK
In this section, we present the design details of V�����.

4.1 Authentication Protocol
Challenges and responses: V����� employs a challenge-response

protocol as illustrated in Figure 5. At each authentication session, S
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sends the user a challenge and receives a response. Only after match-
ing the measured response to the previously recorded response is
the user authenticated. Each challenge-response pair (CRP) is dis-
posable; a challenge will not be reused in other authentication
sessions.

A vibration challenge (C) is a specially designed acoustic sig-
nal played by V . S collects a challenge-speci�c and user-distinct
response for verifying the user identity. The nth challenge Cn =

(fcrp , f 1n ... f Mn ) can be characterized byM randomly selected dis-
tinct spectral stimuli (sinusoidal waves) appearing at di�erent slots
within the entire time period of the challenge, and fcrp is the time-
varying frequency of a chirp signal. For each challenge Cn , the
response is measuredT times. Rn , the response to challengeCn has
T elements: Rin (i = 1, 2, . . . ,T ). As explained earlier, each response
is a function of the challenge as well as the nonlinearities associated
with playing the challenge to the user’s hand. The nonlinear dy-
namics are challenge-dependent and user-speci�c; each challenge
produces a unique response for each user.

Enrollment: The enrollment phase of V����� is initiated when
requested byU , or CRPs are depleted. S generates N new random
challenges C1 to CN that are not previously used for authentica-
tion. V plays each Cn with the user’s hand placed on the panel
and records the corresponding response Rn . This procedure is re-
peated T times to generate a robust training set. After receiving
the responses R1 to RN , S trains the classi�ers for the new CRPs;
V����� trains one classi�er for each CRP. We employ one-class
k-nearest neighbors (OC-kNN) classi�er for verifying the response
corresponding to a challenge. During training, a threshold Thn is
computed for each classi�er corresponding to each challenge. We
assume that the enrollment phase takes place in a secure setting
(attacker cannot record/alter the recorded responses).

Authentication: After the enrollment is completed,U can re-
quest authentication to S . Upon receiving an authentication request,
S randomly chooses a challenge Cn from unused challenge pool,
which is sent to V . While U places their hand on the vibration
surface, V plays the challenge Cn collects a response R̃n , which is
sent to S . S performs the feature extraction and decision making.

The authentication decision D on R̃n corresponding to Cn is
described as follows:

D = Fn (R̃n ,Rn ,Thn ), (5)

where Fn represents the process starting at feature extraction and
ending at the OC-kNN-based classi�cation.Rn representsT training
responses collected during enrollment; andThn is a challenge- and
user-speci�c threshold. The challenge used in the current session,
Cn , is disposed to ensure security against replay attack. The detailed
decision process is discussed in Section 4.5.

4.2 Framework Overview
The processing framework of V����� is illustrated in Figure 6
including is major stages. The collected responses during the enroll-
ment session (i.e., R1n ,R2n , . . . ,RTn ) and authentication session (i.e.,
R̃) is synchronized and segmented� rst; then,� lters and normaliza-
tion are applied on the raw response segments. V����� extracts
e�ective spectrotemporal features from the raw time-domain re-
sponse. For each CRP on normalized feature vectors, an OC-kNN

Enrollment Authentication

Scaling
factors

Yes No

Response
collection

Signal 
pre-processing

Feature
processing

Decision
making

Play all challenges Play one challenge

Record response(s)

Signal synchronization and segmentation

Signal filtering and normalization

Baseline features

Extract descriptive cepstral feature 

Feature profiling Feature scaling

< Threshold

User authenticated User rejected

OC-kNN classification

Figure 6: Processing framework of V�����.

classi�er is built. An authentication decision is made based on the
comparison of the CRP-speci�c threshold and the OC-kNN distance
between observed features of response R̃ and the templates. The
advantage of using OC-kNN as a classi�er is that training can be
conducted per-person, without the need to collecting data from
multiple people.

4.3 Vibration Challenge Design
We have two requirements from Velody’s vibration CRPs: (1) distin-
guishability between the users of the system and (2) distinguisha-
bility as well as unpredictability from previously observed CRPs.
These requirements necessitate the careful design of the challenges.

To meet the� rst requirement, we adopt a chirp vibration signal
(frequency sweep) to capture the frequency selectivity contributed
by the physiological characteristics of human hand in a short time.
We meet the second requirement by designing each challenge to
evoke a unique vibration response each time. The period of entire
challenge is divided into several time slots, and in each slot, V�����
superimposes a sinusoidal wave at a random frequency onto the
chirp instance to make the response unpredictable. The superimpo-
sition of the chirp signal with a sinusoidal wave generates complex
harmonics and intermodulation interactions of di�erent orders si-
multaneously, which is practically unpredictable from previously
observed CRPs.

The vibration challenge signal Cn (t) as a function of time t is
expressed as:

Cn (t) = Scrp (t) +
I’

i=1
Ssin,i (t). (6)

The linear chirp signal Scrp (t) is constructed by:

Scrp (t) = Acrp sin
�
2� fcrp (t)t + �crp

�
, (7)

where Acrp and �crp denote the amplitude and phase of the chirp
signal, respectively; and fcrp (t) is the frequency of the chirp, which
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Figure 7: Comparison of challenge and response spectro-
grams. The challenge contains the chirp as well as superim-
posed sinusoidal signals at di�erent frequencies. Some non-
linear components are highlighted in the response.

linear changes from fb to fe over time:

fcrp (t) =
fe � fb
Tcrp

t + fb . (8)

The random component Ssin,i (t) in (6) is de�ned as:

Ssin,i =

(
Ai sin(2� fi t + �i ) if (i � 1)TcrpI  t < i

Tcrp
I

0 otherwise,
(9)

whereAi is the amplitude of the sinusoidal wave in the i-th time
slot, (i � 1)TcrpI  t < i

Tcrp
I ; and fi is the random frequency.

In our prototype, the chirp Scrp changes from fb =0.5 kHz to
fe =10 kHz, in which the vibration speaker generates stable vibra-
tion and hand-surface responses preserve useful information for
distinguishing di�erent users. The duration Tcrp is set to 200 ms,
short enough to avoid annoying the user during enrollment and
authentication. The changeable stiumli of each challenge consist of
20 di�erent sinusoidal waves of random frequencies (i.e., I = 20),
uniformly distributed over in a range between 0.5 kHz to 10 kHz
to ensure diversity of both linear and nonlinear components. The
amplitudes of sinusoidal stimuli, Ai , is also randomly determined
for challenge diversity.

In Figure 7, we show two spectrograms: one from a challenge
and one from its corresponding response. From Figure 7(b), we can
clearly observe some nonlinear components, such as the highlighted
ones, including harmonics and intermodulation, which are widely
spread over a wide frequency range.

4.4 Feature Processing
Signal pre-processing: First, we perform signal alignment and

segmentation to minimize bias for feature extraction, resulting
from imperfect hardware synchronization. We align the measured
response with the challenge by� nding the time lag that maximizes
the cross-correlation between them. Second, we apply a bandpass
�lter between 0.3 kHz and 20 kHz to remove external vibration
induced by motion. Also, we apply multi-band spectral subtraction
to clean the in-band noise due to measurement. Finally, we apply Z-
score normalization on each response signal to reduce the variability
from gesture inconsistency.

Cepstral feature extraction: The cepstral features are widely
adopted for acoustic modeling of music, human speech, and struc-
tural damage, etc. which are of complex or nonlinear nature. In-
tuitively, cepstral coe�cients describe the dynamics among the
di�erent frequency bands of a signal, including the contribution
of linear and nonlinear spectral components. Cepstral coe�cients
are calculated by applying discrete consine transform (DCT) on
the complex logarithm of the Fourier transform of a time-domain
signal. A sliding window is used to extract cepstral coe�cients over
the duration of a signal to model its temporal dynamics.

The Mel-frequency cepstral coe�cient (MFCC) is the most fre-
quently used cepstral feature for human speechmodeling and recog-
nition since the Mel-scale� lter banks are optimized for human
speech and perception frequency. Instead of using the Mel-band,
V����� applies linearly allocated� lter banks before calculating
the coe�cients. We argue that unlike human speech where high-
frequency components contribute less to human perception, the
nonlinear vibration responses of V����� are spread more widely
across the spectrum. Speci�cally, the band edges of overlapped�lter
banks are separated by 0.25 kHz, and we take 40-th order cepstral
coe�cients at each time window of 10 ms, with a window overlap
of 8 ms to capture� ne-grained dynamics. Moreover, the delta and
delta-delta of the cepstral coe�cients are also computed to capture
more� ne-grained spectral dynamics within a short time frame. A
cepstral feature map combines all the cepstral coe�cients with the
log energy and� rst/second order delta energies per window.

Statistical feature extraction: Raw cepstral features exhibit
inconsistencies brought by several factors such as circuitry ran-
domness, gesture variation, and imperfect signal segmentation. To
overcome this issue, we extract statistical features for each coe�-
cient channel. Each coe�cient channel is de�ned as the sequence
of the values of cepstral coe�cients over signal duration.

Besides mean, variance, entropy, and power, which are standard
metrics in characterizing a random variable or its distribution, we
adopt other metrics to assess the distribution of cepstral coe�-
cients over the signal period. Skewness measures the degree of
symmemtry of left and right parts of a distribution; kurtosis esti-
mates the ‘tailedness’ of one distribution compared to normal dis-
tribution; and crest factor examines the signi�cance of the extreme
peak in the distribution [18]. The� nal feature vector comprises
statistical features describing the cepstral, delta-cepstral, and delta-
delta-cepstral coe�cients as well as log frame energies. This results
in a feature vector with 1722 elements per response in this work.

4.5 Classi�cation
V����� is a per-user system; a V����� user does not have access to
other users’ CRPs for privacy and security considerations. This re-
quirement constrains V�����’s classi�er design as it cannot obtain
negative samples from other users. OC-kNN is an instance-based
classi�er that relies on the similarity between inference-time obser-
vations and training instances.V����� trains one OC-kNN classi�er
for each CRP; the underlying assumption is that the response to a
challenge for a user is di�erent from those to other challenges. It
is also di�erent from responses to the same challenge from other
users. The authenticator service passes the features from the re-
sponse to the CRP’s OC-kNN that decides whether the response
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is valid or not for the played challenge. The two major steps in
OC-kNN decision making are distance calculation and threshold
comparison.

Distance calculation: Recall that during enrollment, V�����
plays each challenge T times, so that it collects T copies of the
response. Each response is associated with a feature vector. For the
rest of this discussion, x in, j refers to the ith feature of a training

response (R jn ) to the challenge Cn . To keep the notation simple, we
use x in instead of x in, j , except for Eq. 12.

We� rst normalize each feature to the same scale by min-max
normalization for the fairness of the distance-based OC-kNN:

x̂ in =
x in �min(x in)

max(x in) �min(x in )
, (10)

where the min and max are taken for a feature value over the T
responses.

Given an unseen feature vector zn at the authentication phase,
V����� scales it using themin andmax factors computed during
training: ẑin =

zin�min(x i
n )

max (x i
n )�min(x i

n )
. We observe that di�erent features

have varying sensitivity to system or gesture randomness. We
introduce a weight for each feature so that the more consistent
features have higher weights [5]:

wi
n =

max(E(x̂ in))� E(x̂ in)Õ1722
i=1 (max(E(x̂ in ))� E(x̂ in))

. (11)

The expectation is taken over the T training samples (responses to
a single challenge during enrollment). The min and max are taken
over the 1722 features.

The weights are applied to both the training and test instances.
The `1 distance is calculated between the weighted test instance ẑn
and all T training instances x̂n,1...T as:

dj = d(ẑn , x̂n, j ) =
1722’
i=1

���(ẑin � ˆx in, j ) ·w
i
n

��� . (12)

The� nal distance of the test instance to the challenge is calcu-
lated by averaging the k smallest dj values. Comparing the�nal
distance to a threshold Th yields the� nal classi�cation result.

Threshold estimation: The major obstacle in V�����’s classi-
�cation is determining a properTh for each user and each CRP. An
ideal Th accepts legitimate samples while rejecting all illegitimate
samples. The `1 distances from the classi�er show great diversity
among users and CRPs, hence, a� xed threshold for every user and
CRP is not ideal. Nevertheless, we notice that distances between
training instances and baseline responses collected from vibrating
surface without hand contact correlate with those of illegitimate
distances (� > 0.5,p = 0.000) for each user. V����� utilizes these
baseline samples available to every user during enrollment to esti-
mate Thn corresponding to the nth challenge of one user. V�����
calibrates Th by leave-one-out cross validation based on training
and baseline samples. More speci�cally, one training instance is
held out at a fold, and its kNN distance dn,pos as well as distance
of baseline samples dn,bl are computed using the rest training
instances. Then, the threshold Thn is determined by

Thn = E(dn,pos ) + � ⇥ (E(dn,bl ) � E(dn,pos )) (13)

Vibration speakerVibration surface

Accelerometers
Figure 8: V����� prototype setup.

where the expectation is taken through all folds and � is a global
tuning factor, the usability of which on all CRPs will be evaluated
instead of determining thresholds by exhaustive search.

5 PROTOTYPE AND DATA COLLECTION
5.1 Hardware Prototype
A prototype of V����� is built, as shown in Figure 8. A commercial
o�-the-shelf vibration speaker Vib-Tribe Troll Plus is used to play
challenges. It is attached to a vibration surface, which is an 8-inch
copper plate laying on a polymer foam pad. The speaker has an
e�ective frequency range between 80 Hz to 18 kHz and a signal
to noise ratio (SNR) of 80 dB. Two contact microphones (BU27135
accelerometer) are attached on two di�erent locations of the vibra-
tion surface to measure vibration responses. The BU27135 is an
analog accelerometer with a wide e�ective spectrum and a high
sensitivity. Since V����� relies on the physiological properties of
human hand instead of behavioral traits, we� x the gesture for
all the users: all users are asked to put the right hand with�n-
gers spread on the vibration surface, where we draw a hand shape
for consistent alignment in evaluating impersonation attack. As a
proof-of-concept, a PC is used to output all challenges through a
built-in sound card and collect responses through a dual-channel
USB sound card, sampling at 48 kHz. MATLAB’s data acquisition
(DAQ) toolbox is used.

We argue transferring challenges and collecting responses can
be done remotely via wireless protocol, such as WiFi and Bluetooth.
in a real-world use case. The duration of each challenge is set to
200 ms. We generate 100 challenges, and these challenges are kept
unchanged for all users for establishing impersonation attacks.

5.2 Data Collection
We recruited 15 subjects with body mass index (BMI) ranging from
17.5 to 29.6 with a median of 22.2. The entire course of data col-
lection took place over one and a half months, during which each
participant was involved in three data collection sessions. The�rst
two sessions were performed within one day with a time gap of at
least 30 minutes. This was to verify intra-day (short-term) consis-
tency and to establish baselines of consistency. The third session
was arranged at least� ve days after the� rst two sessions to collect
data for verifying inter-day (long-term) consistency.

Each session took about 20 to 30 minutes, including introduction,
orientation, surveying, and data collection. After explaining the
consent form, having user’s agreement and signature and collecting
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basic information about the user, each participantwas demonstrated
with how to interact with V����� interface and take a good ges-
ture. For each challenge, responses were measured for 15 trials.
In between two consecutive trials, the user was asked to remove
the hand from the plate and relax to ensure the diversity of the
data set. Each trial took 30 seconds, including short intervals of
100 ms between two consecutive challenges. No complicated task
or gesture for enrollment or authentication was needed. In a real
use case, each authentication session will take only 200 ms, which
is short enough to ease user’s burden. The user study is approved
by the Institutional Review Board (IRB) of our institution.

The total number of collected responses is 67,500 (3 sessions ⇥
15 users ⇥ 100 challenges ⇥ 15 trails). Additional 15 responses were
collected from empty vibration surface for threshold estimation
and attack evaluation.

As for impersonation attack, for each user, we consider all other
14 users as active impersonators. Therefore, we use 3⇥15⇥100⇥14
= 63,000 samples for impersonation attack against each user. As
for replay attack of raw signal attack, we use responses collected
for challenges other than the legit one. For each participant, the
number of raw signal replay samples is 99⇥100 = 9900. For each
user, we also conduct benchmarking sessions for evaluating the
attack using modeling and synthesis.

6 EVALUATION
In this section, we evaluate the V����� framework focusing on
answering two questions about its usability and security aspects.

Q1: How well does V����� authenticate legitimate users?
Themajor factor impacting the usability of biometric authentication
is its success rate of verifying true users (true positive), which is
typically compared against the possibility that an illegitimate user
is falsely accepted (false positive), where we adopt responses from
other users performing the same gesture while being stimulated by
the same challenges as impersonation samples.

More speci�cally, four detailed usability aspects need to be ana-
lyzed to answer Q1 comprehensively, for which we vary V�����’s
con�guration like threshold, training set size, and CRP complexity,
and interpret results of FNR, FPR, and EER.
• How sensitive is V����� to system parameters such as k in OC-
kNNs and threshold factor �?

• How consistent is V�����’s accuracy in the long term?
• How much training data do we actually need?
• How scalable are the CRPs of V�����?

Q2: How robust is V����� against various a�acks? The se-
curity evaluation focuses on examining and comparing the attack
success rate of zero-e�ort attack, impersonation attack, raw signal
replay attack, and synthesis attacks. The following question will be
answered in this regard.
• What is the most e�ective attack modality, and why?

Evaluation metrics: The major metrics used for quantitatively
analyzing the system’s usability and security are as follows:
• False negative rate (FNR): The rate of mistakenly rejecting le-
gitimate users, as a function of classi�cation threshold. It is a
usability metric.
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Figure 9: Authentication performance of intra-day sessions.

• False positive rate (FPR): The ratio of how many illegitimate
samples are accepted, as a function of classi�cation threshold. It
is a security metric.

• Equal error rate (EER): The rate when FPR equals to FNR for a
certain classi�cation threshold. It is a widely adopted metric to
assess the overall accuracy and how well usability and security
are balanced in an authentcaion system.

6.1 Accuracy of Authenticating Legitimate
Users

6.1.1 System parameter baselining using intra-day sessions. One
of the challenges in implementing V�����’s classi�cation scheme
is tuning the large number of OC-kNN classi�ers corresponding
to many CRPs with a minimal e�ort since it is not practical to
exhaustively search the optimal con�guration for each classi�er of
every CRP. To this end, we evaluate whether two major parameters,
OC-kNN component k and global threshold tuning factor � , are
su�cient to achieve a good overall authentication accuracy.

For each user, two separate sessions are used for evaluating sys-
tem performance. Though physiological characteristics of human
hand are relatively consistent, we argue that multiple factors, such
as gesture, posture, and contact force, which may not be well con-
trolled by users without concentration across di�erent sessions,
may in�uence the authentication success rate. The system con�gu-
ration of V����� should be robust against these variations.

Setup: We use two sessions within one day (intra-day) but 30
minutes apart for all 15 users and 100 CRPs to establish a baseline
for authentication accuracy. One session is used as a training set,
and another acts as a test set. Each session includes 15 trials for
every CRP. For each user, 30 trials of both two sessions from all
14 other impersonators are used as illegitimate samples for the
classi�er of each CRP. We evaluate k = 1, 3, 5, . . . , 13, which are
�xed for both threshold estimation and OC-kNN testing. Tuning
factor � is varied from -0.1 to 0.4 with a step of 0.02.

Results: The impact of k in OC-kNNs is evaluated� rst. A very
small k may lead to noisy classi�cation results and unstable perfor-
mance; on the other hand, if k is too large, it will cause under-�tting
and the decision boundary will be overly smoothed. Figure 9(a)
shows the average EERs of all the users and classi�ers with various
k values, which are calculated by� nding the crossover of inter-
polated FNR and FPR data points at varying discrete � . We can
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Figure 10: Authentication performance of inter-day ses-
sions.

see that V����� is able to achieve a satisfactory EER below 6.3%
within a wide range of k from 1 to 13. The minimum EER of 5.7% is
attained when k = 3.

The trend of FNR and FPR with varying threshold factor � from
-0.1 to 0.4 is shown in Figure 9(b) at an optimal k = 3, which is� xed
for following experiments. Both FNR and FPR change smoothly and
monotonically with � as a larger � accepts more legitimate samples
while misclassifying more impersonation samples as well, which is
intuitive regarding the distance-based OC-kNN classi�cation. FNR
and FPR intersect at � = 0.19 when EER is 5.7% (marked with a
purple dot in Figure 9(b)). V����� performs satisfactorily within a
broader range of � . For example, if � = 0.14 is chosen, Velody can
reject over 97.1% of attacks while maintaining a FNR at 10.7%.

Hence, we verify that V�����’s classi�cation can achieve a good
overall authentication accuracy with a large pool of CRPs without
tuning parameters in a brute-force manner, and it is capable of
handling inter-session variation of intra-day tests.

6.1.2 Long-term consistency evaluation on inter-day sessions. To
verify long-term consistency and strengthen our usability argument,
we collect the third session, following the same experimental proce-
dure, but� ve days later than the� rst two sessions for each user. In
daily usage, larger variation in vibration responses may occur due
to behavioral changes by di�erent cognitive and physical statuses,
which may not be well considered by intra-day experiments.

Setup: We�x k to 3 and use the� rst two sessions, includingT =

30 trials as the training set to authenticate the third session, which
capture more variation of users due to inter-session behavioral
inconsistency, as we observe that using training data collected in
a single session for authenticating inter-day trials may not cover
this variation perfectly, resulting a higher average EER of 7.9% by
training on two individual sessions respectively.

Results: We show the varying FNR and impersonation FPR
evaluated on inter-day sessions in Figure 10. We observe similar
trend of FNR and FPR compared to intra-day veri�cation results. A
low EER of 5.8% can be achieved at � = 0.23 (marked with a purple
dot in Figure 10), which indicates negligible di�erence compared
to 5.7% from intra-day evaluation. Though the optimal � varies
slightly, Velody still achieves low FNR and FPR of 11.8% and 2.7%
respectively using an � = 0.18, close to the interpolated EER point
at � = 0.19 of intra-day veri�cation, indicating good consistency.

Therefore, we verify that V����� is robust to system and be-
havioral variation and attains good long-term consistency with
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Figure 11: Authentication performance with di�erent train-
ing set sizes.

reasonable training e�ort. We argue that physiological properties
of human hand are relatively stable regarding to time despite that
physical development process of children or aging may a�ect the
properties [28], which can be addressed by updating the CRP pool.

6.1.3 Impact of training set size. Though V����� employs very
short CRPs of 200 ms and almost passive enrollment/authentication
sessions without performing complicated tasks, the size of training
set in�uences usability in multiple angles such as duration of en-
rollment, the computation time for kNN at authentication phase,
as well as data storage. To investigate the sensitivity of authentica-
tion performance to the number of instances used in training each
classi�er, we vary the number of training instances and examine
accuracy of V����� for each case.

Setup: We prune the training set from T = 30 instances of two
intra-day sessions to 10 with a step of 5 by trimming those have
larger average pairwise `1 distances to other training instances in
the validation phase then test using 15 inter-day trials.

Results: In Figure 11, we show the variation of authentication
performance ((a): EER, (b): FNR/FPR) with training set sizes. From
the EER plot, we conclude that the performance is generally stable
against di�erentT , however, the more legitimate templates we have,
the better V�����’s overall performance is, as the EER decreases
from 7.6% to 5.8% by varying the number of instances from 10 to
30. Also, from Figure 11(b) we see both FPR and FNR do not vary
substantially from 15 to 30 at a� xed � of 0.22, meanwhile a smaller
size T bene�ts consistency while sacri�cing security slightly.

These� ndings indicate more training instances do improve sys-
tem robustness, nevertheless, using fewer training instances around
15 is feasible to achieve comparable authentication performance
while saving enrollment time if users keep good consistency, as
well as data storage and computation at authentication time.

6.1.4 Scalability of V����� CRP. The CRP pool of V����� can
be scaled by changing challenges in di�erent domains like sinu-
soidal frequencies or complexity in terms of challenge duration
and bandwidth of signal. We still anticipate that V����� maintains
its performance when a larger CRP pool is deployed for realistic
usages with daily authentication activity, which is evaluated here.

Setup: First, for validating the variation in authentication suc-
cess rate regarding di�erent combinations of sinusoidal stimuli,
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Figure 12: Authentication performance of di�erent CRPs.

we use the inter-session results and demonstrate the individual
accuracies of all 100 200 ms-challenge.

Also, based on the same dataset we have, we can emulate the sce-
nario when the challenge complexity is varied by truncating each
200-ms CRP in time domain to 100 ms and 50 ms respectively, start-
ing from t = 0 which ensures that responses are not impacted by
previous signal. Each truncated challenge-response has a narrower
e�ective chirp bandwidth and fewer sinusoidal stimuli.

Results: The accuracy statistics of di�erent vibration challenges
are shown in Figure 12. The performances of vibration challenges
of varying combinations of stimuli are quite consistent, and 99% of
them have an average FPR lower than 10%. The average FNR per
CRP is stable across various challenges, though more variant than
FPR, and only a few challenges’ (11%) FNRs are higher than 10%.

For verifying the e�cacy of CRPs with reduced complexity, the
threshold tuning factor � is varied for each case, and we also eval-
uate the FNR with FPR from impersonation attack, whose results
are shown in Figure 13. From the plot, we observe that EER only
degrades slightly from 5.8% to 9.1% and 10.4% when 200-ms, 100-
ms, and 50-ms CRPs are used, respectively. Despite the observation
that CRPs with reduced complexity lead to higher FNR while con-
tributing to lower FPR with an � ranging from 0.15 to 0.4, and the
thresholds to achieve equal error drift from that using 200-ms CRPs.

Revisiting the� ndings, we conclude that the design of V�����
vibration challenge is scalable and� exible. A user can enlarge the
CRP pool by di�erent approaches like updating the spectral stimuli,
changing chirp bandwidth, and varying signal duration. Also, the
enrollment and authentication time will be saved proportionally
using decreased challenge duration with an insigni�cant penalty in
system accuracy. However, V����� also leaves the opportunities for
improving the accuracy of di�erent CRP designs by recon�guring
framework parameters such as the duration of sliding window,
cepstral� lter banks, etc., in feature extraction.

6.2 Robustness against Various Attacks
To answer Q2, we set up multiple attack scenarios with varying
attacker capabilities and compare the results in respect to usability
represented by FNR, whose results are shown in Figure 14.

Setup: The con�guration detail of all evaluated attacks is ex-
plained below. Note that all classi�ers are trained using 30 trials
and k is set to 3. (i) Zero-e�ort attack: For evaluating this attack,
we collect 15 responses from the vibrating V����� surface with-
out hand contact to attack all 100 classi�ers and all 15 users. (ii)
Impersonation attack: This attack is evaluated with system consis-
tency in previous section. Every classi�er is attacked by responses
of other 14 impersonators in all 3 sessions. (iii) Raw signal replay
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Figure 13: Authentication performance usingCRPswith var-
ious complexities.

attack: We consider the worst case scenario that all previous CRPs
are overheard For each classi�er, one raw response from every
other challenge is replayed, resulting 99⇥100 = 9900 replay attacks
per user. (iv) Synthesis attack: Based on resources assumed in raw
signal replay attack, the adversary is capable of predicting users’
responses in real time using di�erent modeling methods.

Three modeling methods used in synthesis attack are as follows.
(a) Transfer function-based synthesis: The adversary approximately
models the nonlinear vibration system using transfer function.
Chirp signal is frequently used for identifying vibration system [29].
The attacker caculates the transfer function from the response of
a linear frequency sweep between 0.2 kHz to 18 kHz with a dura-
tion of 200 ms, same as a legal challenge. The transfer function is
computed by averaging 10 estimates. Two inputs are considered:
raw/original challenge templates (TF-O in Figure 14) and responses
acquired from the empty vibration surface (TF-E). Using the second
input, the attacker focuses on modeling the e�ect contributed by
contact of the user’s hand. (b) Nonlinear system identi�cation-based
synthesis: The attacker adopts cascaded Hammerstein model, which
is a well established method to identify nonlineartiy in vibration
system [30]. In this method, nonlinear system is modeled as mul-
tiple branches of nonlinear static polynomial elements followed
by a linear impulse response, which is computed by measurement
from an optimized exponential frequency sweep. Similar to trans-
fer function-based synthesis, we compute the Hammerstein model
for each user by exciting the hand-surface system with a 0.2 kHz
to 18 kHz optimized sweep of 200 ms, and attack 100 times for
each user, considering two input sources same as (a) (NI-O, NI-E
respectively). (c) Feature-level synthesis: Features of an unknown re-
sponse is predicted by estimating a feature-level mapping between
challenge and responses modelled by the least square solution x
in Ax = B where A is the feature vector extracted from responses
of empty surface and B is that obtained from the corresponding
hand-surface vibration response signal. The attack success rate is
represented by FPR (FT) in Figure 14.

Results: Comparing various attack success rates in Figure 14,
we conclude that impersonation attack is the strongest one. More
speci�cally, when� below 0.8, none of the othermodalities succeeds
in attacking V����� (0% FPR). We interpret the� nding as follows.
The failure of zero-e�ort attack is due to largely di�erent force dis-
tributions and linear/nonlinear responses on the surface compared
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Figure 14: Robustness of V����� against various attacks.

to impersonation. Replaying raw responses is not a feasible attack
due to unique spectrotemporal characteristics of randomized stim-
uli in each challenge. The failure of synthesis methods attributes to
the heavy nonlinearity in the vibration response introduced by ei-
ther circuitry, vibration surface, or hand contact. Also, a ‘corrupted’
measurement consisting of complicated nonlinear responses of
di�erent orders’ harmonics and intermodulation even biases esti-
mation by transfer function or Hammerstein model. These�ndings
con�rm that precise modeling and prediction in V�����’s scenario
is very di�cult because of multiple factors including non-analytic
nonlinearity in real-world measurement. Hence, impersonation is
the strongest attack in this case because of similar physical proper-
ties between hands and surface contact condition among multiple
users.

So far, we have answered all questions post before. To summa-
rize, V����� authenticates legitimate users consistently across time
with minimal e�ort in� ne-tuning for many CRPs, minimal authen-
tication e�ort, and reasonable training e�ort. V�����’s disposable
CRPs are scalable for long-term usage. Security under various at-
tacks is also guaranteed as V����� achieves a low EER at 5.8%
impersonation attack and stopping 100% of other attacks including
replay and synthesis, bene�ting from the unique spectrotemporal
characteristics of nonlinear vibration responses.

7 DISCUSSION
We have successfully demonstrated V�����’s usability and security
against various attacks through extensive experiments and analysis.
To further improveV�����’s practicality and security, the following
issues are to be considered.

Deployment in various se�ings: In this work, we used a vibra-
tion speaker as a vibration source and a copper plate as a vibration
media. We envision that V����� can be deployed in a variety of
settings with a di�erent vibration source and vibration media as
long as nonlinearity exists in vibration propagation. It could even
be embedded in smart devices, such as laptops and smartwatches.
To achieve this vision, a platform-speci�c challenge generation
scheme and evaluation would be required.

Enriching V�����’s CRP pool: The most important security
attribute of V����� is its non-static and disposable biometric fea-
tures. Other than the dimensions we discussed in the analysis, such

as duration, random frequencies, and bandwidth, more aspects can
be tuned to increase the the number of CRPs and improve dis-
tinguishability. Examples include the number and composition of
spectral stimuli at each window and di�erent gestures made by the
user during enrollment and authentication, etc.

V�����’s training protocol balances between the e�ort in gener-
ating non-static biometrics and the size of the CRP pool to cover
the user’s authentication needs. According to a recent user study
about daily authentication behavior [25], the average biometric
authentication frequency is about 20 times per week for each user.
V����� can enroll 100 CRPs, each lasting for 200 ms, within 30
minutes. These CRPs can cover the user’s authentication needs for
5 weeks.

Emerging a�acks: Although we assumed an attacker with
strong capabilities, except obtaining a precisely replicated phys-
ical model of the victim’s hand, we cannot completely eliminate
the possibility of more sophisticated attacks in the future. Existing
methods of nonlinear system modeling like Hammerstein model,
mostly work only in a constrained and controlled scenario. These
methods rely on su�cient measurement, specially designed ex-
citation, etc., for limited objectives, such as assessing the total
harmonics distortion, instead of covering all nonlinear dynamics
like non-analytic intermodulation. We can also consider neural
network-based modeling methods, such as voice or music synthe-
sis. However, they typically require a mature auditory model or
su�cient training [10, 37], which require the adversary much more
e�ort and stronger capabilities. We believe these attacks are appli-
cable to V�����’s scenario.

8 RELATEDWORK
In this section, we revisit previous e�ort on biometric authetni-
cation, where we both qualitatively and quantitatively compare
V����� with the state-of-art to show V�����’s contribution.

Traditional biometrics can be categorized into physiological
biometrics and behavioral biometrics. Physiological characteris-
tics like� ngerprint, hand geometry, iris structure, or physiolog-
ical signals like electroencephalogram (EEG), electrocardiogram
(ECG), and electromyogram (EMG), have been used as biomet-
rics [2, 38, 45]. Behavioral biometric refers to unique characteristics
preserved in human dynamics such as gesture dynamics, speech,
or gait [7, 11, 32, 34], which are easy to acquire.

In Table 1, we compare several state-of-art biometric authenti-
cation systems with V�����. The works are divided by protocols,
namely physiological, behavioral, and challenge-response. Note
that the biometric-based challenge-response protocol here also re-
lies on physiological properties of users but leveraging unique,
passive, and varying responses to di�erent stimuli. Following at-
tributes are listed together: modality, FNR, FPR by impersonation,
FPR by replay and synthesis. If the EER between falsely rejecting
user samples and accepting impersonator is available, it is reported
as FNR and FPR (impersonation) separately.

In Cardiac Scan [20], authors exploit sensing capability of a DC-
coupled continuous wave radar to sense unique motion pattern
of users’ hearts and achieve an EER as low as 4.42%. Note that
the FPR (impersonation) reported here originates from zero-e�ort
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Table 1: Comparison among biometric systems. (⇤: zero-e�ort impersonator; †: reduced replay quality; ‡: static user features.)

Work Protocol Modality FNR FPR
Impersonation Replay Synthesis

Cardiac Scan [20] Physiological Radar-measured heart motion 4.42% 4.42%* N.A. N.A.
Wang et al. [40] Physiological Heartbeat-induced vibration 2.48% 2.48%* N.A. N.A.
BiLock [46] Behavioral tooth click sound <5% <1.5% 5.6%† N.A.
BreathPrint [4] Behavioral Breathing gesture-induced sound 6% 2% 2%† N.A.
Taprint [5] Behavioral Tapping-induced vibration 1.74% 1.74% N.A. N.A.
VibWrite [21] Behavioral Vibration response of dynamic gestures 10% 2% N.A. N.A.
Sluganovic et al. [33] Challenge-response‡ Re�ective eye movement 6.3% 6.3% 0.06% N.A.
Brain Password [19] Challenge-response Electroencephalogram 2.503% 2.503% 0.789% N.A.
V����� (this work) Challenge-response Vibration response 5.8% 5.8% 0% 0%

impersonators since it is not possible to mimic one’s heartbeat. Sim-
ilar characteristics of heartbeat are utilized in [40] with heartbeat-
induced vibration captured by smartphones. The EER is as low as
2.48% against zero-e�ort impersonator. However, this protocol may
not be applicable to defend against replay and synthesis attacks
in V�����’s threat model where static biometic features may be
leaked through a compromised channel.

The authors of [46] harvest unique sound from a tooth click
recorded by commodity devices and achieve good consistency and
security through a comprehensive user study and evaluation. With
an increasing replay distance, the FPR of replay attack decreases
to 5.6%. The authors of BreathPrint [4] utilizes distinction in users’
breath, and three types of breathing gestures–sni�, normal, and
deep breathing are evaluated, whose FNR and FPR are 6% and 2%
respectively. Chen et al. [5] designed a system named Taprint that
uses vibration induced by� nger tapping measured for user authen-
tication, whose EER is as low as 1.74%. Liu et al. [21] leverage the
facts that varying user gesture will change the frequency response
measured from a vibrating surface and designed a generalizable
platform called VibWrite for authenticating users by password,
lock pattern, and gesture input. We report the FNR and FPR by
using password input. Even under imitation attack when the pass-
word is leaked, the FPR is as low as 2%. Though in [4, 46], the
authors acknowledge and evaluate the security against replay at-
tack of recorded noisy biometric samples, they are not applicable to
V�����’s threat model where clean raw responses can be injected
directly, since they discover that the e�cacy of replay attacks on
these biometrics is highly dependent on the quality of replaying.

In terms of protocol, our work is most similar to [19, 33], where
the replay attack of raw responses can be stopped by adopting a
challenge-response protocol with changing visual stimuli that elic-
its unique passive re�ective eye movement for each challenge and
each user. The system achieves an EER of 6.3% against imperson-
ation, and it rejects almost all replay samples. Note that though a
challenge-response protocol is used, the security against synthesis
attack is guaranteed by the high complexity of synthesizing eye
movement because features used to verify user identity from dif-
ferent responses are still static. Hence, this modality may not be
suitable for V�����’s use case as well. Also, a similar protocol is
implemented by using the event-associated electroencephalogram
to generate vision-related challenge-response pairs, achieving good
accuracy. The cognitive factors involved in the user enrollment,
however, restricted the number of responses gathered within a

satisfactory time [19]. V����� takes the advantage of the challenge-
response protocol and the modality of hand-surface vibration re-
sponse to achieve robust authentication, where the physiological
characteristics of hand and the nonlinearity in hand-surface vibra-
tion responses are utilized to generate numerous disposable CRPs
for defending against various attacks including raw signal replay
and even strong synthesis attacks. V����� attains low error rates
while succeeding in rejecting all synthesized samples, too.

9 CONCLUSION
This paper veri�es the feasibility of using the nonlinear response
from hand-surface system for user authentication, relying on the
unique physiological characteristics of human handwith a challenge-
response protocol. By building the prototype of V����� and con-
ducting extensive user experiments, we validate several properties
of V����� regarding usability and security. First, V����� is able
to achieve an EER against impersonation as low as 5.8% in long
term, showing a negligible loss with 5.7% using short-term test
trials, indicating good temporal permanence. Moreover, this result
can be attained with reasonable training e�ort and negligible au-
thentication time of a 200-ms challenge. Furthermore, we verify
the scalability of V�����’s disposable CRPs by examining the FNR
and FPR of individual challenges and challenges of di�erent com-
plexities. More importantly, V����� succeeds in defending against
all replay and synthesis attacks, bene�ting from distinct features in
each nonlinear response to a unique challenge.

Our� ndings suggest that V�����’s non-static biometrics are
robust even when strong attackers present. Nevertheless, to further
improve the scalability, more e�ort should be put to investigate its
performance on ubiquitous settings and the design space of CRPs.
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